1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#include "imagealgos.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <limits>
#include <mutex>
#include <typeinfo>
#include <utility>
// #include <arm_neon.h>
#include "genetic_algos.h"
#include "macro.h"
uint8_t pgm_image[64 + img_width * img_height * sizeof(uint16_t)];
size_t pgm_image_size = 0;
std::mutex pgm_image_mtx;
size_t pgm_save(Image *img, FILE *outfile, bool really_save) {
std::lock_guard<std::mutex> lg(pgm_image_mtx);
size_t n = 0;
// n += fprintf(outfile, "P5\n%d %d\n%d\n",
// img->width, img->height, 0xFF);
n += sprintf((char*)pgm_image, "P5\n%d %d\n%d\n",
img->width, img->height, 0xFF);
for (size_t i = 0; i < img->width * img->height; ++i)
{
uint16_t *pixels = (uint16_t*)img->data;
const auto p = pixels[i];
uint8_t value = (pixels[i] & 0xFF00) >> 8;
// n += fwrite(&value, 1, 1, outfile);
memcpy((void*)(pgm_image + n), &value, sizeof(value));
n += sizeof(value);
}
pgm_image_size = n;
// std::cout << "size is " << n << std::endl;
if (really_save)
{
fwrite(pgm_image, 1, pgm_image_size, outfile);
fflush(outfile);
}
return n;
}
void unpack_10bit(uint8_t const *src, Image const &image, uint16_t *dest)
{
unsigned int w_align = image.width & ~3;
for (unsigned int y = 0; y < image.height; y++, src += image.stride)
{
uint8_t const *ptr = src;
unsigned int x;
for (x = 0; x < w_align; x += 4, ptr += 5)
{
*dest++ = (ptr[0] << 2) | ((ptr[4] >> 0) & 3);
*dest++ = (ptr[1] << 2) | ((ptr[4] >> 2) & 3);
*dest++ = (ptr[2] << 2) | ((ptr[4] >> 4) & 3);
*dest++ = (ptr[3] << 2) | ((ptr[4] >> 6) & 3);
}
for (; x < image.width; x++)
*dest++ = (ptr[x & 3] << 2) | ((ptr[4] >> ((x & 3) << 1)) & 3);
}
}
void unpack_16bit(uint8_t const *src, Image const &image, uint16_t *dest)
{
start_timer(unpack_16bit);
/* Assume the pixels in memory are already in native byte order */
unsigned int w = image.width;
for (unsigned int y = 0; y < image.height; y++)
{
memcpy(dest, src, 2 * w);
dest += w;
src += image.stride;
}
stop_timer(unpack_16bit);
}
void rotate(Image &image)
{
start_timer(rotate);
using namespace std;
for (size_t i = 0; i < image.height; ++i)
{
for (size_t j = 0; j < image.width; ++j)
{
image.rotated_cw[j][i] = image.data[image.height - i][j];
}
}
stop_timer(rotate);
}
template<class T, size_t N>
constexpr size_t mysize(T (&)[N]) { return N; }
float process_column(uint16_t (&column)[])
{
float result = std::numeric_limits<float>::quiet_NaN();
constexpr uint32_t patternSize = 16; // good
constexpr uint32_t signalThreshold = 450; // = SKO * sqrt(patternSize)
static constexpr uint32_t patternOffset = patternSize - ((patternSize % 2 == 1) ? 1 : 0);
const uint32_t correlationSize = img_height - patternSize +
((patternSize % 2 == 1) ? 1 : 0);
uint32_t correlation[img_height];
uint32_t integralSum[img_height];
uint32_t maxSum = signalThreshold * 50;
uint32_t x1 = 0;
int32_t y1 = 0;
int32_t y2 = 0;
memset(correlation, 0, img_height * sizeof(uint32_t));
integralSum[0] = 0;
for(uint32_t i = 1; i < img_height; ++i) {
if (column[i] < 100) {
column[i] = 1;
}
integralSum[i] = column[i] / 256 + integralSum[i - 1];
}
// maxSum = 0 ;
// size_t maxIdx { 0 };
// for (size_t i = 0; i < img_height - patternSize; ++i) {
// const auto sum = integralSum[i + patternSize] - integralSum[i];
// if (sum > maxSum) {
// maxSum = sum;
// maxIdx = i;
// }
// }
// Algo genetic(column + maxIdx);
// // std::cout << "maxIdx " << maxIdx << std::endl;
// // return maxIdx + genetic.run().a;
// return 500;
// return img_height - maxIdx - genetic.run().a;
for(uint32_t i = 0; i < correlationSize; ++i)
correlation[i + patternSize / 2] =
column[i + patternSize / 2] / 256 *
(integralSum[i + patternOffset] - integralSum[i]);
for(uint32_t i = 3; i < img_height - 2; ++i)
{
const auto sum = correlation[i - 1] +
correlation[i] +
correlation[i + 1];
if(sum > maxSum)
{
const int32_t rioux0 = int32_t(correlation[i - 2 - 1] + correlation[i - 1 - 1]) -
int32_t(correlation[i + 1 - 1] + correlation[i + 2 - 1]);
if(rioux0 < 0)
{
const int32_t rioux1 = int32_t(correlation[i - 2] + correlation[i - 1]) -
int32_t(correlation[i + 1] + correlation[i + 2]);
if(rioux1 >= 0)
{
x1 = i - 1;
y1 = rioux0;
y2 = rioux1;
maxSum = sum;
}
}
}
}
result = (y2 != y1) ?
(img_height - (float(x1) - (float(y1) / (y2 - y1)))) :
std::numeric_limits<float>::quiet_NaN();
static bool result_done = false;
if (!result_done) {
std::cout << "result " << result << std::endl;
result_done = true;
}
// std::cout << "result is '" << result << "'\n";
return result;
// center of mass
#if 0
auto max_el = std::max_element(std::begin(accumulated_sum),
std::end(accumulated_sum) - window_size);
size_t max_sum_idx = max_el - std::begin(accumulated_sum) + window_size;
double sum_w = 0;
double prod_wx = 0;
double wmc = 0;
for(int i = max_sum_idx - window_size; i < max_sum_idx; ++i)
{
prod_wx += column[i] * i;
sum_w += column[i];
}
wmc = float(prod_wx) / float(sum_w);
result = img_height - wmc;
return result;
#endif
}
void process_columns(Image &image)
{
std::cout << "here\n";
start_timer(process_columns);
for (size_t i = 0; i < image.width; i++)
{
image.pixels[i] = process_column(image.rotated_cw[i]);
// Algo genetic(image.rotated_cw[i]);
// image.pixels[i] = genetic.run().a;
// if (i == 0) {
// std::cout << "pixel: " << image.pixels[i] << std::endl;
// }
}
stop_timer(process_columns);
}
|