summaryrefslogtreecommitdiff
path: root/src/image.cpp
blob: e4d51c115b8c7ac2b404a49de62599ac95c269ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include "image.h"

// #include <format>

#include <QElapsedTimer>

#include <libcamera/formats.h>

#include "macro.h"
#include "pixels.h"

uint64_t sum_elapsed_ns = 0;
uint64_t corr_elapsed_ns = 0;
uint64_t max_elapsed_ns = 0;
uint64_t value_elapsed_ns = 0;

float process_column(const uint8_t (&column)[])
{
    start_timer(process_column);
    QElapsedTimer t;
    t.start();

    float result = std::numeric_limits<float>::quiet_NaN();

    constexpr uint32_t signalThreshold = 900; // = SKO * sqrt(patternSize)
    static constexpr uint32_t patternOffset = patternSize -
                                              ((patternSize % 2 == 1) ? 1 : 0);
    const uint32_t correlationSize = img_height - patternSize +
                                     ((patternSize % 2 == 1) ? 1 : 0);
    uint32_t correlation[img_height];
    uint32_t integralSum[img_height];
    uint32_t maxSum = signalThreshold * 50;
    uint32_t x1 = 0;
    int32_t y1 = 0;
    int32_t y2 = 0;

    memset(correlation, 0, img_height * sizeof(correlation[0]));
    integralSum[0] = 0;

    for (uint32_t i = 1; i < img_height; ++i) {
        integralSum[i] = column[i] + integralSum[i - 1];
    }
    sum_elapsed_ns += t.nsecsElapsed();
    t.restart();

    for (uint32_t i = 0; i < correlationSize; ++i)
        correlation[i + patternSize / 2] = column[i + patternSize / 2]
                                           * (integralSum[i + patternOffset] - integralSum[i]);

    corr_elapsed_ns += t.nsecsElapsed();
    t.restart();

    for (uint32_t i = 3; i < img_height - 2; ++i) {
        const auto sum = correlation[i - 1] + correlation[i] +
                         correlation[i + 1];

        if (sum > maxSum)
        {
            const int32_t rioux0 = int32_t(correlation[i - 2 - 1] +
                                           correlation[i - 1 - 1]) -
                                   int32_t(correlation[i + 1 - 1] +
                                           correlation[i + 2 - 1]);

            if (rioux0 < 0)
            {
                const int32_t rioux1 = int32_t(correlation[i - 2] +
                                               correlation[i - 1]) -
                                       int32_t(correlation[i + 1] +
                                               correlation[i + 2]);

                if (rioux1 >= 0)
                {
                    x1 = i - 1;
                    y1 = rioux0;
                    y2 = rioux1;
                    maxSum = sum;
                }
            }
        }
    }

    value_elapsed_ns += t.nsecsElapsed();
    t.restart();

    result = (y2 != y1) ? (float(x1) - (float(y1) / (y2 - y1)))
                        : std::numeric_limits<float>::quiet_NaN();

    return result;
}

void Image::rotate()
{
    start_timer(rotate);

    using namespace std;

#pragma omp parallel
#pragma omp for
    for (size_t i = 0; i < img_height; ++i)
    {
        for (size_t j = 0; j < img_width; ++j)
        {
            rotated_cw[j][i] = data[img_height - i][j];
        }
    }

    stop_timer(rotate);
}

std::shared_ptr<Pixels> Image::pixels() const
{
    auto result = std::make_shared<Pixels>();
    result->counters = counters;

    start_timer(process_columns);

#pragma omp chunk
#pragma omp parallel for
    for (size_t i = 0; i < img_width; i++) {
        result->pixels[i] = process_column(rotated_cw[i]);
    }

    // for (size_t i = 640 - 5; i < 640 + 5; ++i) {
    //     std::cout << result->pixels[i] << ' ';
    // }
    // std::cout << std::endl;

    stop_timer(process_columns);

    return result;
}

void Image::copyFromData(const void *src, size_t size)
{
    if (Q_UNLIKELY(size % sizeof(data) != 0 || size < sizeof(data))) {
        throw std::logic_error(__func__ + std::string(": wrong data size"));
    }

    switch (pixelFormat) {
    case libcamera::formats::R8: {
        // std::cout << "R8" << std::endl;
        memcpy(data, src, size);
        break;
    }
    case libcamera::formats::R16: {
        // std::cout << "R16" << std::endl;
#pragma omp parallel
#pragma omp for
        for (size_t i = 0; i < img_size; i++) {
            data[i / img_width][i % img_width] = (((uint16_t *) src)[i] & 0xff00) >> 8;
        }
        break;
    }
    default:
        throw std::logic_error(__func__ + std::string(": unsupported pixel format"));
        break;
    }
}