summaryrefslogtreecommitdiff
path: root/src/imagealgos.cpp
blob: 2257244007079c8c670ddd9cd2b0d84fd0f1ea28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#include "imagealgos.h"

#include <QDebug>

#include <cassert>
#include <cstdint>
#include <cstring>

#include <algorithm>
#include <iostream>
#include <limits>
#include <mutex>
#include <utility>

#include "macro.h"

uint8_t pgm_image[64 + img_width * img_height * sizeof(uint8_t)];
size_t pgm_image_size = 0;
std::mutex pgm_image_mtx;

template<typename T>
T median3(const T &a, const T &b, const T &c)
{
    using namespace std;
    return max(min(a, b), min(max(a, b), c));
}

// size_t pgm_save(std::shared_ptr<Image> img, FILE *outfile, bool really_save)
size_t pgm_save(Image *img, FILE *outfile, bool really_save)
{
    std::lock_guard<std::mutex> lg(pgm_image_mtx);

    size_t n{0};

    n += sprintf((char*)pgm_image, "P5\n%d %d\n%d\n",
                 img->width, img->height, 0xFF);

    memcpy(pgm_image + n, img->data.data(), sizeof(img->data));
    // memcpy(pgm_image + n, img->data->data(), sizeof(img->data));
    n += sizeof(img->data);
    pgm_image_size = n;

    if (really_save)
    {
        if (outfile) {
            fwrite(pgm_image, 1, pgm_image_size, outfile);
            fflush(outfile);

        } else {
            std::cerr << __func__ << ": output filename is nullptr, cannot save"
                      << std::endl;
        }
    }

    // std::cout << "written pgm image" << std::endl;
    return n;
}

// void unpack_10bit(uint8_t const *src, Image const &image, uint16_t *dest)
// {
//     unsigned int w_align = image.width & ~3;
//     for (unsigned int y = 0; y < image.height; y++, src += image.stride)
//     {
//         uint8_t const *ptr = src;
//         unsigned int x;
//         for (x = 0; x < w_align; x += 4, ptr += 5)
//         {
//             *dest++ = (ptr[0] << 2) | ((ptr[4] >> 0) & 3);
//             *dest++ = (ptr[1] << 2) | ((ptr[4] >> 2) & 3);
//             *dest++ = (ptr[2] << 2) | ((ptr[4] >> 4) & 3);
//             *dest++ = (ptr[3] << 2) | ((ptr[4] >> 6) & 3);
//         }
//         for (; x < image.width; x++)
//             *dest++ = (ptr[x & 3] << 2) | ((ptr[4] >> ((x & 3) << 1)) & 3);
//     }
// }

// void unpack_16bit(uint8_t const *src, Image const &image, uint16_t *dest)
// {
//     start_timer(unpack_16bit);
//     /* Assume the pixels in memory are already in native byte order */
//     unsigned int w = image.width;

//     for (unsigned int y = 0; y < image.height; y++)
//     {
//         memcpy(dest, src, 2 * w);
//         dest += w;
//         src += image.stride;
//     }
//     stop_timer(unpack_16bit);
// }

template<class T, size_t N>
constexpr size_t mysize(T (&)[N]) { return N; }

// void smooth_column(uint8_t (&column)[])
// {
//     for (size_t i = 1; i < img_height - 1; ++i) {
//         column[i] = median3(column[i - 1], column[i], column[i + 1]);
//     }
// }

// float process_column(uint8_t (&column)[])
// {
//     std::cout << "aaaaaaaaaaa\n";
//     start_timer(process_column);

//     float result = std::numeric_limits<float>::quiet_NaN();

//     constexpr uint32_t signalThreshold = 900; // = SKO * sqrt(patternSize)
//     static constexpr uint32_t patternOffset = patternSize - ((patternSize % 2 == 1) ? 1 : 0);
//     const uint32_t correlationSize = img_height - patternSize + ((patternSize % 2 == 1) ? 1 : 0);
//     uint32_t correlation[img_height];
//     uint32_t integralSum[img_height];
//     uint32_t maxSum = signalThreshold * 50;
//     uint32_t x1 = 0;
//     int32_t y1 = 0;
//     int32_t y2 = 0;

//     memset(correlation, 0, img_height * sizeof(correlation[0]));
//     integralSum[0] = 0;

//     for (uint32_t i = 1; i < img_height; ++i) {
//         // if (column[i + 0] < 100) { column[i + 0] = 0; } integralSum[i + 0] = column[i + 0] / 256 + integralSum[i + 0 - 1];
//         // if (column[i + 1] < 100) { column[i + 1] = 0; } integralSum[i + 1] = column[i + 1] / 256 + integralSum[i + 1 - 1];
//         // if (column[i + 2] < 100) { column[i + 2] = 0; } integralSum[i + 2] = column[i + 2] / 256 + integralSum[i + 2 - 1];
//         // if (column[i + 3] < 100) { column[i + 3] = 0; } integralSum[i + 3] = column[i + 3] / 256 + integralSum[i + 3 - 1];
//         // if (column[i + 4] < 100) { column[i + 4] = 0; } integralSum[i + 4] = column[i + 4] / 256 + integralSum[i + 4 - 1];
//         // if (column[i + 5] < 100) { column[i + 5] = 0; } integralSum[i + 5] = column[i + 5] / 256 + integralSum[i + 5 - 1];
//         // if (column[i + 6] < 100) { column[i + 6] = 0; } integralSum[i + 6] = column[i + 6] / 256 + integralSum[i + 6 - 1];
//         // if (column[i + 7] < 100) { column[i + 7] = 0; } integralSum[i + 7] = column[i + 7] / 256 + integralSum[i + 7 - 1];
//         // if (column[i + 8] < 100) { column[i + 8] = 0; } integralSum[i + 8] = column[i + 8] / 256 + integralSum[i + 8 - 1];
//         // if (column[i + 9] < 100) { column[i + 9] = 0; } integralSum[i + 9] = column[i + 9] / 256 + integralSum[i + 9 - 1];
//         // if (column[i + 10] < 100) { column[i + 10] = 0; } integralSum[i + 10] = column[i + 10] / 256 + integralSum[i + 10 - 1];
//         // if (column[i + 11] < 100) { column[i + 11] = 0; } integralSum[i + 11] = column[i + 11] / 256 + integralSum[i + 11 - 1];
//         // if (column[i + 12] < 100) { column[i + 12] = 0; } integralSum[i + 12] = column[i + 12] / 256 + integralSum[i + 12 - 1];
//         // if (column[i + 13] < 100) { column[i + 13] = 0; } integralSum[i + 13] = column[i + 13] / 256 + integralSum[i + 13 - 1];
//         // if (column[i + 14] < 100) { column[i + 14] = 0; } integralSum[i + 14] = column[i + 14] / 256 + integralSum[i + 14 - 1];
//         // if (column[i + 15] < 100) { column[i + 15] = 0; } integralSum[i + 15] = column[i + 15] / 256 + integralSum[i + 15 - 1];

//         if (column[i] < 100) {
//             column[i] = 0;
//         }
//         integralSum[i] = column[i] + integralSum[i - 1];
//     }

//     // maxSum = 0 ;
//     // size_t maxIdx { 0 };

//     // for (size_t i = 0; i < img_height - patternSize; ++i) {
//     //     const auto sum = integralSum[i + patternSize] - integralSum[i];
//     //     if (sum > maxSum) {
//     //         maxSum = sum;
//     //         maxIdx = i;
//     //     }
//     // }

//     // Algo genetic(column + maxIdx);
//     // // std::cout << "maxIdx " << maxIdx << std::endl;

//     // // return maxIdx + genetic.run().a;
//     // return 500;
//     // return img_height - maxIdx - genetic.run().a;

//     for (uint32_t i = 0; i < correlationSize; ++i)
//         correlation[i + patternSize / 2] = column[i + patternSize / 2] / 256
//                                            * (integralSum[i + patternOffset] - integralSum[i]);

//     for (uint32_t i = 3; i < img_height - 2; ++i) {
//         const auto sum = correlation[i - 1] + correlation[i] + correlation[i + 1];

//         if (sum > maxSum) {
//             const int32_t rioux0 = int32_t(correlation[i - 2 - 1] + correlation[i - 1 - 1])
//                                    - int32_t(correlation[i + 1 - 1] + correlation[i + 2 - 1]);

//             if (rioux0 < 0) {
//                 const int32_t rioux1 = int32_t(correlation[i - 2] + correlation[i - 1])
//                                        - int32_t(correlation[i + 1] + correlation[i + 2]);

//                 if (rioux1 >= 0) {
//                     x1 = i - 1;
//                     y1 = rioux0;
//                     y2 = rioux1;
//                     maxSum = sum;
//                 }
//             }
//         }
//     }

//     result = (y2 != y1) ? (float(x1) - (float(y1) / (y2 - y1)))
//                         : std::numeric_limits<float>::quiet_NaN();

//     static bool result_done = false;
//     if (!result_done) {
//         std::cout << "result " << result << std::endl;
//         result_done = true;
//     }
//     // std::cout << "result is '" << result << "'\n";

//     // stop_timer(process_column);

//     return result;

// // center of mass
// #if 0
//     auto max_el = std::max_element(std::begin(accumulated_sum),
//                                    std::end(accumulated_sum) - window_size);

//     size_t max_sum_idx = max_el - std::begin(accumulated_sum) + window_size;

//     double sum_w = 0;
//     double prod_wx = 0;
//     double wmc = 0;

//     for(int i = max_sum_idx - window_size; i < max_sum_idx; ++i)
//     {
//         prod_wx += column[i] * i;
//         sum_w += column[i];
//     }

//     wmc = float(prod_wx) / float(sum_w);

//     result = img_height - wmc;

//     return result;
// #endif
// }

// Pixels process_columns(Image &image)
// {
//     Pixels result;
//     result.counters = image.counters;

//     // std::cout << "here\n";
//     start_timer(process_columns);

//     for (size_t i = 0; i < image.width; i++)
//     {
//         // smooth_column(image.rotated_cw[i]);
//         result.pixels[i] = process_column(image.rotated_cw[i]);
//         // Algo genetic(image.rotated_cw[i]);

//         // image.pixels[i] = genetic.run().a;

//         // if (i == 0) {
//         // std::cout << "pixel: " << image.pixels[i] << std::endl;
//         // }
//     }

//     stop_timer(process_columns);

//     return result;
// }

QList<QLineF> pixelsToLines(const Pixels &rawProfile)
{
    const auto& pixels = rawProfile.pixels;
    QList<QPointF> points(pixels.size());

    for (int i = 0; i < pixels.size(); ++i)
    {
        points[i] = { qreal(i) - img_width / 2, pixels.at(i) };
    }

    // qDebug() << "mid points" << points.mid(points.count() - 3, 6);

    return pointsToLines(std::move(points));
}

QList<QLineF> pointsToLines(const QList<QPointF> &points)
{
    constexpr double maxDistanceFromLine { 3 };
    constexpr double minLineLength { 10 };

    QList<int> lineAnchors{0, int(points.count() - 1)};

    auto vecLength = [](const QPointF& vector) {
        return std::hypot(vector.x(), vector.y());
    };

    auto distanceToLine = [vecLength](const QPointF& point, const QLineF& line) {
        // const auto d1 = point - line.p1();
        // const auto d2 = line.p2() - line.p1();

        // const auto norm = vecLength(d2);
        // qDebug() << "norm" << norm;

        // if (norm <= std::numeric_limits<double>::epsilon())
        // {
        //     qDebug() << "AAAAAAAAAAAAAAAAAA";
        //     return vecLength(d1);
        // }

        // const auto result = std::fabs(d1.x() * d2.y() - d1.y() * d2.x()) / norm;

        // if (!qFuzzyIsNull(result))
        // {
        //     qDebug() << "NOT NULL" << result << point << line;
        // }

        // return result;
        // transform to loocal coordinates system (0,0) - (lx, ly)
        QPointF p1 = line.p1();
        QPointF p2 = line.p2();
        const auto& p = point;
        qreal x = p.x() - p1.x();
        qreal y = p.y() - p1.y();
        qreal x2 = p2.x() - p1.x();
        qreal y2 = p2.y() - p1.y();

        // if line is a point (nodes are the same) =>
        // just return distance between point and one line node
        qreal norm = sqrt(x2*x2 + y2*y2);
        if (norm <= std::numeric_limits<int>::epsilon())
            return sqrt(x*x + y*y);

        // distance
        // qDebug() << "dist" << fabs(x*y2 - y*x2) / norm << point << line;
        return fabs(x * y2 - y * x2) / norm;
    };

    // for (const auto& p : points)
    // {
    //     qDebug() << "\t" << p;
    // }

    for (int i = 0; i < lineAnchors.count() - 1; ++i)
    {
        const auto &lineFirst = i;
        const auto &lineLast = i + 1;
        const auto& leftPointIdx = lineAnchors.at(lineFirst);
        const auto& rightPointIdx = lineAnchors.at(lineLast);

        if (rightPointIdx - leftPointIdx < 2)
        {
            continue;
        }

        const QLineF line { points.at(leftPointIdx), points.at(rightPointIdx) };

        // std::cout << "max between " << leftPointIdx + 1 << " and "
        // << rightPointIdx - 1 << std::endl;

        const auto farthest = std::max_element(
            // std::execution::par_unseq,
            points.cbegin() + leftPointIdx + 1,
            points.cbegin() + rightPointIdx - 1,
            [line, distanceToLine](const QPointF& a, const QPointF& b) {
                return distanceToLine(a, line) < distanceToLine(b, line);
            }
        );

        // std::cout << "done max" << std::endl;
        // auto tmp = *farthest;
        // std::cout << "done farthest" << std::endl;

        // qDebug() << "farthest point" << distanceToLine(*farthest, line);
        // qDebug() << "farthest dist" << distanceToLine(*farthest, line);
        // qDebug() << "that's from line" << line;

        if (distanceToLine(*farthest, line) > maxDistanceFromLine)
        {
            // std::cout << "try insert at " << i + 1 << ". lineAnchors.size is
            // "
            //           << lineAnchors.size()
            //           << ". inserting this: " << farthest - points.cbegin()
            //           << std::endl;
            lineAnchors.insert(i + 1, farthest - points.cbegin());
            // std::cout << "done insert" << std::endl;
            --i;
            // qDebug() << "I'm here" << i;
            continue;
        }
    }

    struct LineAB
    {
        double a { std::numeric_limits<double>::quiet_NaN() };
        double b { std::numeric_limits<double>::quiet_NaN() };

        LineAB(const QList<QPointF>& points) {
            if (points.isEmpty())
            {
                return;
            }

            double sumX { 0 };
            double sumY { 0 };
            double sumXY { 0 };
            double sumXX { 0 };

            // FIXME: validate
            // for (const auto& point : points)
            const int delta = points.count() * 0.15;
            for (int i = delta; i < points.count() - delta; ++i)
            {
                const auto& point = points.at(i);
                sumX += point.x();
                sumY += point.y();
                sumXY += point.x() * point.y();
                sumXX += point.x() * point.x();
            }

            // sumX /= points.count();
            // sumY /= points.count();
            // sumXY /= points.count();
            // sumXX /= points.count();

            const int n = points.count() - delta * 2;
            Q_ASSERT_X(n > 0, Q_FUNC_INFO, "n <= 0");

            a = (n * sumXY - sumX * sumY) /
                (n * sumXX - sumX * sumX);
            b = (sumY - a * sumX) / n;
        }
    };

    // auto pointsToLineAB =

    // qDebug() << "line anchors count is" << lineAnchors.count();

    constexpr bool useLsd = true;

    QList<QLineF> result { lineAnchors.length() - 1 };

    for (int i = 0; i < lineAnchors.count() - 1; ++i)
    {
        const auto& leftPointIdx = lineAnchors.at(i);
        const auto& rightPointIdx = lineAnchors.at(i + 1);

        QPointF leftPoint = points.at(leftPointIdx);
        QPointF rightPoint = points.at(rightPointIdx);

        LineAB lineAB(points.mid(leftPointIdx, rightPointIdx - leftPointIdx));

        leftPoint.setY(lineAB.a * leftPoint.x() + lineAB.b);
        rightPoint.setY(lineAB.a * rightPoint.x() + lineAB.b);

        if (useLsd)
            result[i] = QLineF{ std::move(leftPoint), std::move(rightPoint) };
        else
            result[i] = QLineF{ points.at(lineAnchors.at(i)), points.at(lineAnchors.at(i + 1)) };
    }

    if (useLsd)
    {
        for (int i = 0; i < result.count() - 1; ++i)
        {
            auto& lineA = result[i];
            auto& lineB = result[i + 1];

            QPointF intersectionPoint {};

            if (lineA.intersects(lineB, &intersectionPoint) != QLineF::NoIntersection)
            {
                lineA.setP2(intersectionPoint);
                lineB.setP1(intersectionPoint);
            }
        }
    }

    // qDebug() << result;

    return result;
}