1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
#include "graphicsscene.h"
// qt
#include <QGraphicsEllipseItem>
#include <QGraphicsLineItem>
#include <QGraphicsPolygonItem>
#include <QGraphicsTextItem>
#include <QGraphicsView>
namespace orphex
{
namespace constants
{
const QLineF laserPlane{QPointF{-1000, 0}, QPointF{1000, 0}};
}
} // namespace orphex
GraphicsScene::GraphicsScene(QObject* parent)
: QGraphicsScene{parent}
{
setSceneRect(QRectF{QPointF{-1000, -1000}, QPointF{1000, 1000}});
m_lenseItem = addEllipse(
QRectF{QPointF{-1, -15}, QPointF{1, 15}},
QPen{Qt::yellow, 0}
);
m_lenseItem->setTransformOriginPoint(m_lenseItem->boundingRect().center());
m_sensorItem = new QGraphicsLineItem(QLineF{}, m_lenseItem);
m_sensorItem->setPen(QPen{Qt::red, 0});
m_lineOfActionItem = new QGraphicsLineItem{
QLineF{QPointF{0, -50}, QPointF{0, 50}},
m_lenseItem
};
m_lineOfActionItem->setPen(QPen{Qt::green, 0});
m_opticalAxisItem = new QGraphicsLineItem{
QLineF{QPointF{-1000, 0}, QPointF{1000, 0}},
m_lenseItem
};
m_opticalAxisItem->setPen(QPen{Qt::gray, 0});
using namespace orphex::constants;
m_laserPlaneItem = addLine(laserPlane, QPen{Qt::black, 0});
m_laserPlaneItem->stackBefore(m_lenseItem);
m_reverseLaserPlaneItem = new QGraphicsLineItem(QLineF{}, m_lenseItem);
m_reverseLaserPlaneItem->setPen(QPen{Qt::magenta, 2});
m_reverseLaserPlaneItem->setVisible(false);
m_desiredLaserPlaneItem = new QGraphicsLineItem(QLineF{}, m_lenseItem);
m_desiredLaserPlaneItem->setPen(QPen{Qt::yellow, 0.1});
m_desiredLaserPlaneItem->setOpacity(0.5);
m_desiredImagePlaneItem = new QGraphicsLineItem(QLineF{}, m_lenseItem);
m_desiredImagePlaneItem->setPen(QPen{Qt::yellow, 0.15});
m_desiredImagePlaneItem->stackBefore(m_sensorItem);
m_desiredRangeAreaItem = new QGraphicsPolygonItem{m_lenseItem};
m_desiredRangeAreaItem->setPen(
QPen{m_desiredLaserPlaneItem->pen().color(), 0}
);
m_desiredRangeAreaItem->setBrush(
QBrush{m_desiredLaserPlaneItem->pen().color()}
);
m_desiredRangeAreaItem->setOpacity(0.1);
m_actualRangeItem = new QGraphicsLineItem(QLineF{}, m_lenseItem);
m_actualRangeItem->setPen(QPen{Qt::red, 0.1});
m_actualRangeItem->setOpacity(0.5);
m_actualRangeAreaItem = new QGraphicsPolygonItem{m_lenseItem};
m_actualRangeAreaItem->setPen(QPen{m_sensorItem->pen().color(), 0});
m_actualRangeAreaItem->setBrush(QBrush{m_sensorItem->pen().color()});
m_actualRangeAreaItem->setOpacity(0.1);
m_sensorLenseIntersectionItem = new QGraphicsEllipseItem{
QRectF{QPointF{-1, -1}, QPointF{1, 1}},
m_lenseItem
};
m_sensorLenseIntersectionItem->setPen(QPen{Qt::red, 0.1});
const auto sensorLenseTextItem = new QGraphicsTextItem{
tr("Scheimpflug: sensor/lense"),
m_sensorLenseIntersectionItem
};
sensorLenseTextItem->setPos(QPointF{-6, -8});
auto font = sensorLenseTextItem->font();
font.setPixelSize(2);
sensorLenseTextItem->setFont(font);
sensorLenseTextItem->setDefaultTextColor(
m_sensorLenseIntersectionItem->pen().color()
);
m_lenseLaserIntersectionItem = new QGraphicsEllipseItem{
QRectF{QPointF{-1, -1}, QPointF{1, 1}},
m_lenseItem
};
m_lenseLaserIntersectionItem->setPen(QPen{Qt::blue, 0});
const auto lenseLaserTextItem = new QGraphicsTextItem{
tr("Scheimpflug: lense/laser"),
m_lenseLaserIntersectionItem
};
lenseLaserTextItem->setPos(QPointF{-6, -2});
lenseLaserTextItem->setFont(font);
lenseLaserTextItem->setDefaultTextColor(
m_lenseLaserIntersectionItem->pen().color()
);
}
void GraphicsScene::update(OpticalDesign* design)
{
qDebug() << "update";
if (!design)
{
qCritical() << Q_FUNC_INFO << "design is nullptr";
return;
}
using namespace orphex::constants;
const auto F = design->get_focalDistanceMm();
const auto H = design->get_lenseYPosMm();
const auto w = design->get_sensorPixelsWidth();
const auto h = design->get_sensorPixelsHeight();
const auto wMm = design->get_sensorWidthMm();
const auto hMm = design->get_sensorHeightMm();
const auto oAngle = design->get_opticalAxisAngleDegrees();
m_lenseItem->setRotation(m_lenseItem->rotation());
m_lenseItem->setRotation(-oAngle);
m_lenseItem->setPos(QPointF{0, -H});
const auto objectToImage = [F](const QPointF& objectPoint) -> QPointF {
// please note that object X is negative
const auto imagePointX = 1. / (1. / F - 1. / -objectPoint.x());
const auto magnification = imagePointX / objectPoint.x();
const auto imagePointY = magnification * objectPoint.y();
return QPointF{imagePointX, imagePointY};
};
const auto imageToObject = [F](const QPointF& imagePoint) -> QPointF {
const auto objectPointX = 1. / (1. / imagePoint.x() - 1. / F);
const auto magnification = imagePoint.x() / objectPointX;
const auto objectPointY = imagePoint.y() / magnification;
return QPointF{objectPointX, objectPointY};
};
// calculate sensor plane
const auto& oai = m_opticalAxisItem;
const auto& oail = m_opticalAxisItem->line();
const QLineF opticalAxisScene{
oai->mapToScene(oail.p1()),
oai->mapToScene(oail.p2())
};
QPointF intersection{};
const auto type =
m_laserPlaneItem->line().intersects(opticalAxisScene, &intersection);
if (type == QLineF::NoIntersection)
{
qCritical() << "no intersection between laser plane and optical axis";
return;
}
if (!qFuzzyCompare(intersection.y(), 0.))
{
qCritical() << "laser plane/optical axis intersection point y != 0";
return;
}
// take 2 points - to the left and to the right from intersection point;
const auto leftP = intersection / 4;
// const auto rightP = intersection + leftP;
const auto rightP = intersection * 1.5;
// create desired line on laser plane
m_desiredLaserPlaneItem->setLine(
{m_lenseItem->mapFromScene(QPointF{-design->get_zBaseMm(), 0}),
m_lenseItem->mapFromScene(
QPointF{-(design->get_zBaseMm() + design->get_zRangeMm()), 0}
)}
);
// calculate image plane
const auto debugL = m_desiredLaserPlaneItem->line();
const QLineF debugImageL{
objectToImage(debugL.p1()),
objectToImage(debugL.p2())
};
m_desiredImagePlaneItem->setLine(debugImageL);
// create sensor line on image plane
QPointF sensorCenterPos{};
if (m_opticalAxisItem->line().intersects(
m_desiredImagePlaneItem->line(),
&sensorCenterPos
) == QLineF::NoIntersection)
{
qCritical() << "no intersection between sensor plane and optical axis";
return;
}
const auto sensorHalfHeight = design->get_sensorHeightMm() / 2.;
QLineF sensorLine{QPointF{0, 0}, QPointF{0, sensorHalfHeight}};
sensorLine.translate(sensorCenterPos);
sensorLine.setAngle(m_desiredImagePlaneItem->line().angle());
sensorLine.setP1(sensorCenterPos + (sensorCenterPos - sensorLine.p2()));
// at this momet sensor is centered and rotated. apply vertical offset
const auto offsetRatio =
design->get_sensorVerticalOffsetMm() / sensorLine.length();
const auto offset = sensorLine.pointAt(1 + offsetRatio) - sensorLine.p2();
sensorLine.setPoints(sensorLine.p1() + offset, sensorLine.p2() + offset);
m_sensorItem->setLine(sensorLine);
// find laser plane range which corresponds to sensor position
m_actualRangeItem->setLine({
imageToObject(m_sensorItem->line().p1()),
imageToObject(m_sensorItem->line().p2()),
});
// not that object area has negative coords
design->set_actualZBaseMm(
-m_actualRangeItem->mapToScene(m_actualRangeItem->line().p1()).x()
);
design->set_actualZRangeMm(m_actualRangeItem->line().length());
// convert debug image plane to laser plane just to verify they are the same
// TODO: check with code and log errors?
const QLineF reverseLaserPlaneLine{
imageToObject(m_desiredImagePlaneItem->line().p1()),
imageToObject(m_desiredImagePlaneItem->line().p2())
};
m_reverseLaserPlaneItem->setLine(reverseLaserPlaneLine);
// fill desired range area
m_desiredRangeAreaItem->setPolygon(
QPolygonF{
{m_desiredImagePlaneItem->line().p1(),
m_desiredImagePlaneItem->line().p2(),
m_desiredLaserPlaneItem->line().p2(),
m_desiredLaserPlaneItem->line().p1()}
}
);
// fill actual range area
m_actualRangeAreaItem->setPolygon(
QPolygonF{
{m_sensorItem->line().p1(),
m_sensorItem->line().p2(),
m_actualRangeItem->line().p2(),
m_actualRangeItem->line().p1()}
}
);
design->set_sensorLenseAngleDegrees(
m_desiredImagePlaneItem->line().angleTo(m_lineOfActionItem->line())
);
// TODO: take back focal length into account
// check Scheimpflug principle
// TODO: draw lines?
QPointF sensorLenseIntersection{};
if (m_sensorItem->line().intersects(
m_lineOfActionItem->line(),
&sensorLenseIntersection
) == QLineF::NoIntersection)
{
qWarning() << "no intersection between sensor plane and lense plane";
return;
}
m_sensorLenseIntersectionItem->setPos(sensorLenseIntersection);
QPointF lenseLaserIntersection{};
if (m_lineOfActionItem->line().intersects(
m_actualRangeItem->line(),
&lenseLaserIntersection
) == QLineF::NoIntersection)
{
qWarning() << "no intersection between laser plane and lense plane";
return;
}
m_lenseLaserIntersectionItem->setPos(lenseLaserIntersection);
if (!qFuzzyCompare(sensorLenseIntersection, lenseLaserIntersection))
{
qWarning() << "The Scheimpflug principle is not observed:" << Qt::endl
<< "sensor/lense intersection:" << sensorLenseIntersection
<< Qt::endl
<< "lense/laser intersection:" << lenseLaserIntersection;
}
// TODO: move to settings
// doesn't work (doesn't zoom)
constexpr bool autoScale{false};
if (autoScale)
{
// region of interest
QRectF ROI{};
ROI |= m_actualRangeAreaItem->boundingRect();
ROI |= m_desiredRangeAreaItem->boundingRect();
ROI |= m_lenseItem->boundingRect();
ROI |= m_sensorItem->boundingRect();
ROI |= m_sensorLenseIntersectionItem->boundingRect();
ROI |= m_lenseLaserIntersectionItem->boundingRect();
for (const auto& view : views())
{
// TODO: move to settings
constexpr double margin{5.};
view->setSceneRect(ROI);
}
}
// calculate distance between sensor and lense on optical axis
QPointF sensorAxisIntersection{};
if (m_sensorItem->line().intersects(
m_opticalAxisItem->line(),
&sensorAxisIntersection
) == QLineF::NoIntersection)
{
qCritical() << "no intersection between sensor and optical axis";
return;
}
design->set_lenseSensorDistanceMm(
QLineF{QPointF{0, 0}, sensorAxisIntersection}.length()
);
// calculate depth of field
QPointF axisLaserIntersection{};
if (m_opticalAxisItem->line().intersects(
m_actualRangeItem->line(),
&axisLaserIntersection
) == QLineF::NoIntersection)
{
qCritical() << "no intersection between laser and optical axis";
return;
}
// const auto zM = std::min(
// design->get_sensorPixelsHeight(),
// design->get_sensorPixelsWidth()
// ) /
// 1000. / 1000.;
// try z based on sensor cell size
// const auto zMm = std::min(
// design->get_sensorCellHeightUm(),
// design->get_sensorCellHeightUm()
// ) /
// 1000.;
// try z based on 1/16 sensor cell size (calibration step)
const auto zMm = std::min(
design->get_sensorCellHeightUm(),
design->get_sensorCellWidthUm()
) /
1000. / 16.;
// try z based on E. Goldovsky method - 0.2% of sensor height
// const auto zMm = design->get_sensorHeightMm() * 0.2 / 100.;
// const auto RM =
// QLineF{QPointF{0., 0.}, axisLaserIntersection}.length() * 1000.;
const auto RMidMm = QLineF{QPointF{0., 0.}, axisLaserIntersection}.length();
// const auto RFrontMm = QLineF{QPointF{0., 0.},
// axisLaserIntersection}.length(); const auto fM =
// design->get_backFocalDistanceMm() * 1000.;
// Gordijchuk & Pell, 1979, say to use focal distance.
// Wikipedia, based on the same book, says to use back focal distance. WTF?
// const auto fMm = design->get_backFocalDistanceMm();
const auto fMm = design->get_focalDistanceMm();
const auto K = static_cast<int>(design->get_lenseAperture()) / 10.;
using FromSharpDistMm = double;
using BackSharpDistMm = double;
using DofResult = std::tuple<FromSharpDistMm, BackSharpDistMm>;
const auto calculateDof = [zMm, fMm, K](const auto RMm) -> DofResult {
const auto ff = fMm * fMm;
const auto Rff = RMm * ff;
const auto Kfz = K * fMm * zMm;
const auto KRz = K * RMm * zMm;
const auto R1Mm = Rff / (ff - Kfz + KRz);
const auto R2Mm = Rff / (ff + Kfz - KRz);
return {R1Mm, R2Mm};
};
const auto ff = fMm * fMm;
const auto Rff = RMidMm * ff;
const auto Kfz = K * fMm * zMm;
const auto KRz = K * RMidMm * zMm;
// const auto R1M = Rff / (ff - Kfz + KRz);
// const auto R2M = Rff / (ff + Kfz - KRz);
// const auto R1Mm = Rff / (ff - Kfz + KRz);
// const auto R2Mm = Rff / (ff + Kfz - KRz);
const auto [R1Mm, R2Mm] = calculateDof(RMidMm);
qDebug() << "AAAAA: update" << R1Mm << R2Mm
<< design->get_sensorCellHeightUm();
design->set_frontSharpDistanceMm(R1Mm);
design->set_backSharpDistanceMm(R2Mm);
design->set_depthOfFieldMm((R2Mm - R1Mm));
}
|